Step of Proof: fseg_extend
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
fseg
extend
:
1.
T
: Type
2.
l1
:
T
List
3.
v
:
T
4.
l2
:
T
List
5.
L
:
T
List
6.
l2
= (
L
@
l1
)
7. ||
l1
|| < ||
l2
||
8.
l2
[(||
l2
|| - (||
l1
||+1))] =
v
9.
(
null(
L
))
10.
L'
:
T
List
11.
L
= (
L'
@ [last(
L
)])
(
L'
@ [last(
L
)] @
l1
) = (
L'
@ [
v
/
l1
])
latex
by ((((((EqCD)
CollapseTHEN (Auto
))
)
CollapseTHEN (Reduce 0))
)
CollapseTHEN (((EqCD)
Co
CollapseTHEN (Auto
))
))
latex
C
1
: .....subterm..... T:t1:n
C1:
last(
L
) =
v
C
.
Definitions
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
T
,
True
,
t
T
,
A
List
,
[
car
/
cdr
]
,
[]
,
l
[
i
]
,
n
-
m
,
n
+
m
,
#$n
,
last(
L
)
,
as
@
bs
,
A
,
a
<
b
,
type
List
,
Type
,
s
=
t
,
||
as
||
Lemmas
append
wf
,
squash
wf
,
true
wf
origin